
Lecture 3 answers to exercises: Determinants and transformations

1. (a.) 2 · 4− 3 · (−1) = 11

(b.) − 5 · 2− 1 · 0 = −10

(c.) Of this matrix we cannot compute the determinant because it is not square.

(d.) −5·7·1+1·(−2)·3+(−1)·1·0−(−1)·7·3−1·1·1−(−5)·(−2)·0 = −35−6+21−1 = −21

2.

x =

2 5 −2
6 4 −1
1 2 3

4 5 −2
3 4 −1
−1 2 3
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y =

4 2 −2
3 6 −1
−1 1 3

4 5 −2
3 4 −1
−1 2 3

=
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−4
= −10

1

2

z =

4 5 2
3 4 6
−1 2 1

4 5 −2
3 4 −1
−1 2 3

=
−57

−4
= 14
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3. Yes. Just think of a matrix and apply it to the zero vector. The outcome of all
components are zeros.

4. We find the desired matrix by multiplying the two matrices for the two parts. The

matrix for reflection in x+y = 0 is

[
0 −1
−1 0

]
, and the matrix for rotation of 45◦ about

the origin is
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1
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]
. So we compute (note the order!):[
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]
5. A must be the zero matrix. This is true because the vectors

[
2 3 2

]
,
[
1 0 2

]
,

and
[
0 2 4

]
are linearly independent. If a linear transformation maps three linearly

independenty vectors in 3D onto the origin, then it maps all vectors (and points) onto
the origin.

To verify that the three vectors are indeed linearly independent, we compute the deter-

minant
2 1 2
3 0 2
2 2 4

and observe that is it not zero.

6. A =

[
1
2 0
0 0

]
7. We observe what it does with the two base vectors, for instance. It rotates them over
−45◦ and stretches them in length by a factor

√
2. This observation is generally true:

any other vector is also rotated and stretched in the same way.
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8. The matrix has determinant zero, so it will be a projection. Also, it gives any point
the same x and y-coordinates, so it is a projection onto the line y = x. It does not
project orthogonally, but maps points further away from the origin than their orthogonal
projection. (More specifically, points on lines of the form y = −x + d project to the
same point on y = x, namely the point (2d, 2d).)

9. c influences how much a vector is ‘pushed sideways’, or, how much a square is sheared.
When c = 0, there is no sideways pushing, when c = 1, the sideways pushing is as much
as the y-coordinate, and in general, it is as much as c times the y-coordinate.

10.

−1 0 6
0 −1 2
0 0 1



11.

3 0 −2
0 3 −2
0 0 1



12.


0 0 −1 3
0 1 0 0
−1 0 0 3
0 0 0 1


13. We observe that the two points that are the result of the mapping are the two base

vectors. If our information would be that (0, 1) were mapped to (2, 3) and that (1, 0)

were mapped to (9, 7), then the matrix would be easy to write down:

[
9 2
7 3

]
.

But we are given the ‘opposite direction’ of the mapping . . .. But that means that we
need the inverted matrix! So the answer is

1
13

[
3 −2
−7 9

]
.

14. We use the cofactors of the bottom row entries to determine the value of the determi-
nant. Since for a matrix in homogeneous coordinates, only the last entry in the last
row is non-zero, we only need the cofactor of this one entry. The cofactor is the deter-
minant of the top-left 3 × 3 determinant, which is exactly the part that describes the
linear transformation part of the affine transformation. Hence, the determinant of a
matrix in homogeneous coordinates of an affine transformation has the same value as
the determinant if it were a linear transformation! And for a linear transformation we
know that the area of a transformed unit square is given by the absolute value of the
determinant. So the same must be true for affine transformations. In a formula:

a11 a12 a13 t1
a21 a22 a23 t2
a31 a32 a33 t3
0 0 0 1

=

0 ·
a12 a13 t1
a22 a23 t2
a32 a33 t3

+ 0 ·
a11 a13 t1
a21 a23 t2
a31 a33 t3

+ 0 ·
a11 a12 t1
a21 a22 t2
a31 a32 t3

+ 1 ·
a11 a12 a13
a21 a22 a23
a31 a32 a33

=

a11 a12 a13
a21 a22 a23
a31 a32 a33
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